A Deep Learning Approach to Block-based Compressed Sensing of Images

نویسندگان

  • Amir Adler
  • David Boublil
  • Michael Elad
  • Michael Zibulevsky
چکیده

Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small number of measurements, obtained by linear projections of the signal. Block-based CS is a lightweight CS approach that is mostly suitable for processing very high-dimensional images and videos: it operates on local patches, employs a low-complexity reconstruction operator and requires significantly less memory to store the sensing matrix. In this paper we present a deep learning approach for block-based CS, in which a fully-connected network performs both the blockbased linear sensing and non-linear reconstruction stages. During the training phase, the sensing matrix and the nonlinear reconstruction operator are jointly optimized, and the proposed approach outperforms state-of-the-art both in terms of reconstruction quality and computation time. For example, at a 25% sensing rate the average PSNR advantage is 0.77dB and computation time is over 200-times faster.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Full Image Recover for Block-Based Compressive Sensing

Recent years, compressive sensing (CS) has improved greatly for the application of deep learning technology. For convenience, the input image is usually measured and reconstructed block by block. This usually causes block effect in reconstructed images. In this paper, we present a novel CNN-based network to solve this problem. In measurement part, the input image is adaptively measured block by...

متن کامل

A Transfer-Learning Approach for Accelerated MRI using Deep Neural Networks

Neural network based architectures have recently been proposed for reconstruction of undersampled MR acquisitions. A deep network containing many free parameters is typically trained using a relatively large set of fully-sampled MRI data, and later used for on-line reconstruction of undersampled data. Ideally network performance should be optimized by drawing the training and testing data from ...

متن کامل

Deep artifact learning for compressed sensing and parallel MRI

Purpose: Compressed sensing MRI (CS-MRI) from single and parallel coils is one of the powerful ways to reduce the scan time of MR imaging with performance guarantee. However, the computational costs are usually expensive. This paper aims to propose a computationally fast and accurate deep learning algorithm for the reconstruction of MR images from highly down-sampled k-space data. Theory: Based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.01519  شماره 

صفحات  -

تاریخ انتشار 2016